Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Epidemiol ; 52(2): 342-354, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2189115

RESUMEN

BACKGROUND: The Omicron B.1.1.529 variant increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in doubly vaccinated individuals, particularly in the Oxford-AstraZeneca COVID-19 vaccine (ChAdOx1) recipients. To tackle infections, the UK's booster vaccination programmes used messenger ribonucleic acid (mRNA) vaccines irrespective of an individual's primary course vaccine type, and prioritized the clinically vulnerable. These mRNA vaccines included the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) the Moderna COVID-19 vaccine (mRNA-1273). There is limited understanding of the effectiveness of different primary vaccination courses on mRNA booster vaccines against SARs-COV-2 infections and how time-varying confounders affect these evaluations. METHODS: Trial emulation was applied to a prospective community observational cohort in England and Wales to reduce time-varying confounding-by-indication driven by prioritizing vaccination based upon age, vulnerability and exposure. Trial emulation was conducted by meta-analysing eight adult cohort results whose booster vaccinations were staggered between 16 September 2021 and 05 January 2022 and followed until 23 January 2022. Time from booster vaccination until SARS-CoV-2 infection, loss of follow-up or end of study was modelled using Cox proportional hazard models and adjusted for age, sex, minority ethnic status, clinically vulnerability and deprivation. RESULTS: A total of 19 159 participants were analysed, with 11 709 ChAdOx1 primary courses and 7450 BNT162b2 primary courses. Median age, clinical vulnerability status and infection rates fluctuate through time. In mRNA-boosted adults, 7.4% (n = 863) of boosted adults with a ChAdOx1 primary course experienced a SARS-CoV-2 infection compared with 7.7% (n = 571) of those who had BNT162b2 as a primary course. The pooled adjusted hazard ratio (aHR) was 1.01 with a 95% confidence interval (CI) of: 0.90 to 1.13. CONCLUSION: After an mRNA booster dose, we found no difference in protection comparing those with a primary course of BNT162b2 with those with a ChAdOx1 primary course. This contrasts with pre-booster findings where previous research shows greater effectiveness of BNT162b2 than ChAdOx1 in preventing infection.


Asunto(s)
COVID-19 , Adulto , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Vacunación
2.
Sci Rep ; 12(1): 2373, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1684110

RESUMEN

Prior work has shown the utility of using Internet searches to track the incidence of different respiratory illnesses. Similarly, people who suffer from COVID-19 may query for their symptoms prior to accessing the medical system (or in lieu of it). To assist in the UK government's response to the COVID-19 pandemic we analyzed searches for relevant symptoms on the Bing web search engine from users in England to identify areas of the country where unexpected rises in relevant symptom searches occurred. These were reported weekly to the UK Health Security Agency to assist in their monitoring of the pandemic. Our analysis shows that searches for "fever" and "cough" were the most correlated with future case counts during the initial stages of the pandemic, with searches preceding case counts by up to 21 days. Unexpected rises in search patterns were predictive of anomalous rises in future case counts within a week, reaching an Area Under Curve of 0.82 during the initial phase of the pandemic, and later reducing due to changes in symptom presentation. Thus, analysis of regional searches for symptoms can provide an early indicator (of more than one week) of increases in COVID-19 case counts.


Asunto(s)
COVID-19/epidemiología , Punto Alto de Contagio de Enfermedades , Motor de Búsqueda/estadística & datos numéricos , Tos/epidemiología , Inglaterra/epidemiología , Fiebre/epidemiología , Humanos
3.
BMJ Open ; 11(6): e048042, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1285085

RESUMEN

INTRODUCTION: The coronavirus (COVID-19) pandemic has caused significant global mortality and impacted lives around the world. Virus Watch aims to provide evidence on which public health approaches are most likely to be effective in reducing transmission and impact of the virus, and will investigate community incidence, symptom profiles and transmission of COVID-19 in relation to population movement and behaviours. METHODS AND ANALYSIS: Virus Watch is a household community cohort study of acute respiratory infections in England and Wales and will run from June 2020 to August 2021. The study aims to recruit 50 000 people, including 12 500 from minority ethnic backgrounds, for an online survey cohort and monthly antibody testing using home fingerprick test kits. Nested within this larger study will be a subcohort of 10 000 individuals, including 3000 people from minority ethnic backgrounds. This cohort of 10 000 people will have full blood serology taken between October 2020 and January 2021 and repeat serology between May 2021 and August 2021. Participants will also post self-administered nasal swabs for PCR assays of SARS-CoV-2 and will follow one of three different PCR testing schedules based on symptoms. ETHICS AND DISSEMINATION: This study has been approved by the Hampstead National Health Service (NHS) Health Research Authority Ethics Committee (ethics approval number 20/HRA/2320). We are monitoring participant queries and using these to refine methodology where necessary, and are providing summaries and policy briefings of our preliminary findings to inform public health action by working through our partnerships with our study advisory group, Public Health England, NHS and government scientific advisory panels.


Asunto(s)
COVID-19 , Adhesión a Directriz/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos , Salud Pública , COVID-19/epidemiología , Inglaterra/epidemiología , Humanos , Estudios Prospectivos , Factores de Riesgo , Medicina Estatal , Gales/epidemiología
4.
Euro Surveill ; 26(11)2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1181332

RESUMEN

BackgroundA multi-tiered surveillance system based on influenza surveillance was adopted in the United Kingdom in the early stages of the coronavirus disease (COVID-19) epidemic to monitor different stages of the disease. Mandatory social and physical distancing measures (SPDM) were introduced on 23 March 2020 to attempt to limit transmission.AimTo describe the impact of SPDM on COVID-19 activity as detected through the different surveillance systems.MethodsData from national population surveys, web-based indicators, syndromic surveillance, sentinel swabbing, respiratory outbreaks, secondary care admissions and mortality indicators from the start of the epidemic to week 18 2020 were used to identify the timing of peaks in surveillance indicators relative to the introduction of SPDM. This timing was compared with median time from symptom onset to different stages of illness and levels of care or interactions with healthcare services.ResultsThe impact of SPDM was detected within 1 week through population surveys, web search indicators and sentinel swabbing reported by onset date. There were detectable impacts on syndromic surveillance indicators for difficulty breathing, influenza-like illness and COVID-19 coding at 2, 7 and 12 days respectively, hospitalisations and critical care admissions (both 12 days), laboratory positivity (14 days), deaths (17 days) and nursing home outbreaks (4 weeks).ConclusionThe impact of SPDM on COVID-19 activity was detectable within 1 week through community surveillance indicators, highlighting their importance in early detection of changes in activity. Community swabbing surveillance may be increasingly important as a specific indicator, should circulation of seasonal respiratory viruses increase.


Asunto(s)
COVID-19/prevención & control , Monitoreo Epidemiológico , Distanciamiento Físico , COVID-19/epidemiología , Humanos , Reino Unido/epidemiología
5.
NPJ Digit Med ; 4(1): 17, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1072176

RESUMEN

Previous research has demonstrated that various properties of infectious diseases can be inferred from online search behaviour. In this work we use time series of online search query frequencies to gain insights about the prevalence of COVID-19 in multiple countries. We first develop unsupervised modelling techniques based on associated symptom categories identified by the United Kingdom's National Health Service and Public Health England. We then attempt to minimise an expected bias in these signals caused by public interest-as opposed to infections-using the proportion of news media coverage devoted to COVID-19 as a proxy indicator. Our analysis indicates that models based on online searches precede the reported confirmed cases and deaths by 16.7 (10.2-23.2) and 22.1 (17.4-26.9) days, respectively. We also investigate transfer learning techniques for mapping supervised models from countries where the spread of the disease has progressed extensively to countries that are in earlier phases of their respective epidemic curves. Furthermore, we compare time series of online search activity against confirmed COVID-19 cases or deaths jointly across multiple countries, uncovering interesting querying patterns, including the finding that rarer symptoms are better predictors than common ones. Finally, we show that web searches improve the short-term forecasting accuracy of autoregressive models for COVID-19 deaths. Our work provides evidence that online search data can be used to develop complementary public health surveillance methods to help inform the COVID-19 response in conjunction with more established approaches.

6.
Nat Med ; 26(8): 1183-1192, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-704642

RESUMEN

Digital technologies are being harnessed to support the public-health response to COVID-19 worldwide, including population surveillance, case identification, contact tracing and evaluation of interventions on the basis of mobility data and communication with the public. These rapid responses leverage billions of mobile phones, large online datasets, connected devices, relatively low-cost computing resources and advances in machine learning and natural language processing. This Review aims to capture the breadth of digital innovations for the public-health response to COVID-19 worldwide and their limitations, and barriers to their implementation, including legal, ethical and privacy barriers, as well as organizational and workforce barriers. The future of public health is likely to become increasingly digital, and we review the need for the alignment of international strategies for the regulation, evaluation and use of digital technologies to strengthen pandemic management, and future preparedness for COVID-19 and other infectious diseases.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Pandemias/estadística & datos numéricos , Neumonía Viral/prevención & control , Vigilancia de la Población , Salud Pública/estadística & datos numéricos , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Humanos , Aprendizaje Automático , Procesamiento de Lenguaje Natural , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/virología , Privacidad , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA